حل مسائل برنامه ریزی ریاضی با استفاده از شبکه های عصبی

thesis
abstract

با پیشرفت فن آوری اطلاعات و ارتباطات و توسعه ارتباط درون سازمانی و بین سازمانی نیاز به استفاده از مدل های بهینه سازی را برای استفاده منطقی از داده ها و اطلاعات فراهم شده گسترش داده است. این مطلب متضمن بزرگ شدن اندازه مسائل بهینه سازی که در عمل وجود دارند خواهد بود. در این شرایط لزوم به کارگیری روش های کار آمدی که بتوانند با سرعت بالا مسائل بسیار بزرگ را با کیفیت قابل قبول حل کنند بیش از بیش احساس می شود. اخیراً روش های بهینه سازی که بر پایه رویکرد هوش مصنوعی توسعه یافته اند، موفقیت های چشم گیری در حل موثر و کارای مسائل بهینه سازی به دست آورده اند. روش هایی چون الگوریتم ژنتیک ، جستجوی ممنوع ، گرم و سرد کردن شبیه سازی شده و شبکه عصبی ، قابلیت های خود را در حل مسائل بزرگ عملی به خوبی نشان داده اند. امتیازات ویژه ی موجود در شبکه های عصبی امکان کاربرد آنها را در حوزه وسیعی از تحقیقات فراهم ساخته است. از جمله آن امتیازات می توان به امکان یادگیری و بهبود عملکرد بر اساس داده های ورودی اشاره کرد. همچنین امکان انجام محاسبات به صورت موازی در شبکه های عصبی امتیاز دیگری است که با توجه به گسترش سخت افزارهای موازی، امکان حل مسائل بسیار بزرگ را توسط این رویکرد ممکن می سازد. در این پایان نامه چند مدل مختلف شبکه عصبی بازگشتی برای حل مسائل برنامه ریزی خطی و درجه دوم ارائه می شود. تحلیل وجود یکتایی، پایداری و همگرایی سراسری جواب ها مورد بررسی قرار می گیرند و عملکرد روش های ارائه شده با به کارگیری چند مثال نشان داده می شود.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

حل مسائل برنامه ریزی نیمه نامتناهی با استفاده از شبکه های عصبی

برنامه ریزی خطی نیمه نامتناهی، دسته ی مهمی از مسائل بهینه سازی است که بی نهایت قید را شامل می شود. در این مقاله، برای حل این دسته مسائل، یک روش گسسته سازی با یک روش شبکه عصبی ترکیب شده است. با یک گسسته سازی ساده، مسئله برنامه ریزی خطی نیمه نامتناهی به یک مسئله برنامه ریزی خطی تبدیل شده است. سپس از یک مدل شبکه عصبی بازگشتی با یک ساختار ساده بر اساس یک سیستم دینامیکی، برای حل مسئله مورد استفاده ق...

full text

کاربرد شبکه های عصبی در حل مسائل برنامه ریزی خطی

برنامه ریزی خطی(lp) یک گروه مهم از مسائل بهینه سازی است که در اقتصاد،پژوهش های عملیاتی،مهندسی و حوزه های دیگر علمی مورد استفاده قرار می گیرد.در سال 1985 تانک و هاپفیلد مقاله ای را منتشر کردند و یک روش جدید برای حل مسائل برنامه ریزی خطی با استفاده از شبکه های عصبی بازگشتی ارائه دادند.مدل مذکور پاسخ های یک مسأله ی lp را خیلی سریع به دست می آورد.در سابل 1987 کندی و چوا و بعدها مآ و شنبلت مدل های ب...

15 صفحه اول

حل مسائل برنامه ریزی درجه دوم با استفاده از شبکه های عصبی

شبکه های عصبی مصنوعی ابزار قدرتمندی برای محاسبه و به عنوان یک راه حل دیگر برای حل مسائل بهینه سازی می باشند. روش های قدیمی برای حل مسائل ‎$ qp $‎ در واقع مستلزم یک فرایند تکراری هستند و همچنین زمان محاسبات طولانی کاربرد آنها را محدود کرده است‎‎‏ زیرا الگوریتم های قدیمی برای محاسبات عددی به دلیل این که زمان مورد نیاز برای حل تا حدود زیادی وابسته به ساختار و بعد مسأله ها می باشد ممکن است موثر واق...

حل مسائل بهینه‌سازی توزیع با استفاده از شبکه‌های عصبی

در این نوشتار چند روش جدید بر مبنای رویکرد شبکه‌های عصبی خودسازنده برای حل مسائل بهینه‌سازی ارائه می‌شود. این روش‌ها به‌ویژه برای دو مسئله‌ی مهم در برنامه‌ریزی توزیع ــ مسئله‌ی فروشنده‌ی دوره‌گرد (T‌S‌P) و مسئله‌ی مسیریابی (V‌R‌P) ــ توسعه یافته‌اند. عملکرد روش‌های ارائه شده با به‌کارگیری مسائل استاندارد موجود در ادبیات مورد ارزیابی قرار گرفته‌اند. نتایج این آزمایشات نشان می‌دهد که روش‌های ارائ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شاهرود

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023